APPENDIX A

The Truth About
Garbage Collection

GARBAGE collection (GC) is probably the most widely misunderstood feature
of the Java platform. GC is typically advertised as removing all memory manage-
ment responsibility from the application developer. This just isn’t the case. On the
other hand, some developers bend over backwards trying to please the collector,
and often wind up doing much more work than is required. A solid understanding
of the garbage collection model is essential to writing robust, high-performance
software for the Java platform.

This appendix provides an overview of the garbage collection mechanisms
that will help you make intelligent choices about memory management issues. It
also contains information to help you debug complex problems such as memory
leaks.

A.1 Why Should You Care About Garbage Collection?

The cost of allocating and collecting memory can play a significant role in how
your software performs. The overall memory requirements of your software can
have a huge impact on the speed of your program when large RAM requirements
force the OS to use virtual memory. This often occurs when memory is allocated,
but not properly released. Although the JVM is responsible for freeing unused
memory, you have to make it clear what is unused. To write successful, large-scale
programs, you need to understand the basics of the GC mechanism.

A.2 The Guarantees of GC

The specification for the Java platform makes very few promises about how gar-
bage collection actually works. Here is what the Java Virtual Machine Specifica-
tion (JVMS) has to say about memory management.

193

194

Appendix A The Truth About Garbage Collection

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage col-
lector); objects are never explicitly deallocated. The Java virtual machine assumes
no particular type of automatic storage management system, and the storage man-
agement technique may be chosen according to the implementor's system require-
ments.'

While it can seem confusing, the fact that the garbage collection model is not
rigidly defined is actually important and useful—a rigidly defined garbage collec-
tion model might be impossible to implement on all platforms. Similarly, it might
preclude useful optimizations and hurt the performance of the platform in the long
term.

Although there is no one place that contains a full definition of required gar-
bage collector behavior, much of the GC model is implicitly specified through a
number of sections in the Java Language Specification and JVMS. While there are
no guarantees about the exact process followed, all compliant virtual machines
share the basic object lifecycle described in this chapter.

A.3 The Object Lifecycle

In order to discuss garbage collection, it is first useful to examine the object
lifecycle. An object typically goes through most of the following states between
the time it is allocated and the time its resources are finally returned to the system
for reuse.

. Created

. In use (strongly reachable)

. Invisible

. Unreachable

. Collected

. Finalized

~N O L B W N =

. Deallocated

1. Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification, Second Edition, Section
3.5.3. Addison-Wesley, 1999.

A.3 The Object Lifecycle 195

A3.1 Created
When an object is created, several things occur:?

1. Space is allocated for the object.

2. Object construction begins.

3. The superclass constructor is called.

4. Instance initializers and instance variable initializers are run.

5. The rest of constructor body is executed.

The exact costs of these operations depend on the implementation of the JVM, as
well as the implementation of the class being constructed. The thing to keep in
mind is that these costs exist. Once the object has been created, assuming it is
assigned to some variable, it moves directly to the in use state.

A.3.2 1InUse

Objects that are held by at least one strong reference are considered to be in use.
In JDK 1.1.x, all references are strong references. Java 2 introduces three other
kinds of references: weak, soft and phantom. (These reference types are discussed
in Section A.4.1.) The example shown in Listing A-1 creates an object and assigns
it to some variables.

public class CatTest {
static Vector catList = new Vector();
static void makeCat() {
Object cat = new Cat(Q);
catList.addETement(cat);
}

public static void main(String[] arg) {
makeCat();
// do more stuff

}

Listing A-1 Creating and referencing an object

Figure A-1 shows the structure of the objects inside the VM just before the
makeCat method returns. At that moment, two strong references point to the Cat
object.

2. James Gosling, Bill Joy, and Guy Steele, The Java Language Specification, Second Edition.
Addison-Wesley, 2000.

196

Appendix A The Truth About Garbage Collection

Stack Heap
main |CatTest.catList|
makeCat
\ 4
(Vector
A\ 4
—> Cat

Figure A-1 Object reference graph

When the makeCat method returns, the stack frame for that method and any
temporary variables it declares are removed. This leaves the Cat object with just a
single reference from the catList static variable (indirectly via the Vector).

A.3.3 Invisible

An object is in the invisible state when there are no longer any strong references
that are accessible to the program, even though there might still be references. Not
all objects go through this state, and it has been a source of confusion for some de-
velopers. Listing A-2 shows a code fragment that creates an invisible object.

public void run() {
try {
Object foo = new Object();
foo.doSomething();
} catch (Exception e) {
// whatever
}

while (true) { // do stuff } // loop forever
}

Listing A-2 Invisible object

In this example, the object foo falls out of scope when the try block finishes.
It might seem that the foo temporary reference variable would be pulled off the
stack at this point and the associated object would become unreachable. After all,
once the try block finishes, there is no syntax defined that would allow the pro-
gram to access the object again. However, an efficient implementation of the JVM
is unlikely to zero the reference when it goes out of scope. The object referenced
by foo continues to be strongly referenced, at least until the run method returns.
In this case, that might not happen for a long time. Because invisible objects can’t

A.3 The Object Lifecycle

be collected, this is a possible cause of memory leaks. If you run into this
situation, you might have to explicitly null your references to enable garbage
collection.

A.3.4 Unreachable

An object enters an unreachable state when no more strong references to it exist.
When an object is unreachable, it is a candidate for collection. Note the wording:
Just because an object is a candidate for collection doesn’t mean it will be imme-
diately collected. The JVM is free to delay collection until there is an immediate
need for the memory being consumed by the object.

It’s important to note that not just any strong reference will hold an object in
memory. These must be references that chain from a garbage collection root. GC
roots are a special class of variable that includes

* Temporary variables on the stack (of any thread)
* Static variables (from any class)

» Special references from JNI native code

Circular strong references don’t necessarily cause memory leaks. Consider
the code in Listing A-3. It creates two objects, and assigns them references to each
other.

pubTlic void buidDog() {
Dog newDog = new Dog(Q);
Tail newTail = new Tail(Q);
newDog. tail newTail;
newTail.dog newDog;

}

Listing A-3 Circular reference

Figure A-2 shows the reference graph for the objects before the buildDog
method returns. Before the method returns, there are strong references from the
temporary stack variables in the buildDog method pointing to both the Dog and
the Tai.

Figure A-3 shows the graph for the objects after the bui1dDog method returns.
At this point, the Dog and Tai1 both become unreachable from a root and are can-
didates for collection (although the VM might not actually collect these objects
for an indefinite amount of time).

197

198

Appendix A The Truth About Garbage Collection

Stack Heap
G
buildDog

A\ 4

Figure A-2 Reference graph before buildDog returns

Stack Heap

A4
(Tail —

Figure A-3 Reference graph after bui1dDog returns

A.3.5 Collected

An object is in the collected state when the garbage collector has recognized an
object as unreachable and readies it for final processing as a precursor to dealloca-
tion. If the object has a finalize method, then it is marked for finalization. If it
does not have a finalizer then it moves straight to the finalized state.

If a class defines a finalizer, then any instance of that class must have the
finalizer called prior to deallocation. This means that deallocation is delayed by
the inclusion of a finalizer.

A.3.6 Finalized

An object is in the finalized state if it is still unreachable after its finalize
method, if any, has been run. A finalized object is awaiting deallocation. Note that
the VM implementation controls when the finalizer is run. The only thing that can
be said for certain is that adding a finalizer will extend the lifetime of an object.
This means that adding finalizers to objects that you intend to be short-lived is a
bad idea. You are almost always better off doing your own cleanup instead of rely-
ing on a finalizer. Using a finalizer can also leave behind critical resources that

A.4 Reference Objects

won’t be recovered for an indeterminate amount of time. If you are considering
using a finalizer to ensure that important resources are freed in a timely manner,
you might want to reconsider.

One case where a finalize method delayed GC was discovered by the qual-
ity assurance (QA) team working on Swing. The QA team created a stress testing
application that simulated user input by using a thread to send artificial events to
the GUI. Running on one version of the toolkit, the application reported an
OutOfMemoryError after just a few minutes of testing. The problem was finally
traced back to the fact that the thread sending the events was running at a higher
priority than the finalizer thread. The program ran out of memory because about
10,000 Graphics objects were held in the finalizer queue waiting for a chance to
run their finalizers. It turned out that these Graphics objects were holding onto
fairly substantial native resources. The problem was fixed by assuring that when-
ever Swing is done with a Graphics object, dispose is called to ensure that the
native resources are freed as soon as possible.

In addition to lengthening object lifetimes, finalize methods can increase ob-
ject size. For example, some JVMs, such as the classic JVM implementation, add
an extra hidden field to objects with finalize methods so that they can be held in
a linked list finalization queue.

A.3.7 Deallocated

The deallocated state is the final step in garbage collection. If an object is still un-
reachable after all the above work has occurred, then it is a candidate for dealloca-
tion. Again, when and how deallocation occurs is up to the JVM.

A.4 Reference Objects

Prior to the introduction of the Java 2 platform, all references were strong
references. This meant that there was no way for the developer to interact with the
garbage collector, except through brute force methods such as System. gc.

The java.lang.ref package was introduced as part of Java 2. Figure A-4
shows the class hierarchy for the classes in this package. This package defines
reference-object classes that enable a limited degree of interaction with the gar-
bage collector. Reference objects are used to maintain a reference to some other
object in such a way that the collector can still reclaim the target object. As you
might expect, the addition of these new reference objects complicates the concept
of reachability as defined in the object lifecycle. Understanding this is important,

199

200

Appendix A The Truth About Garbage Collection

Resurrection

It is possible to create new strong references to an object while executing
the finalizer method. This puts the object back into an in-use state.
This practice, known as resurrection, is a bad idea. The specification
guarantees that a finalizer is run at most one time per object. Because the
finalizer is not run a second time, resurrecting an object can lead to seri-
ous problems.

For more information about resurrection, see Ken Arnold and James
Gosling, The Java Programming Language, Section 2.10.2. Addison-
Wesley, 1998.

ReferenceQueue WeakReference
Reference < SoftReference
PhantomReference

Figure A-4 Reference class hierarchy

even if you don’t intend to make direct use of this package. Some of the core class
libraries use WeakReferences internally, so you might encounter them while us-
ing memory profilers to track memory usage.

A.4.1 Types of Reference Objects

Three types of reference objects are provided, each weaker than the last: soft,
weak, and phantom. Each type corresponds to a different level of reachability:
* Soft references are for implementing memory-sensitive caches.

* Weak references are for implementing mappings that do not prevent their keys
(or values) from being reclaimed.

* Phantom references are for scheduling pre-mortem cleanup actions in a more
flexible way than is possible with the Java finalization mechanism.

A.4 Reference Objects

Going from strongest to weakest, the different levels of reachability reflect the
lifecycle of an object:

* An object is strongly reachable if some thread can reach it without traversing
any reference objects.

* An object is softly reachable if it is not strongly reachable but can be reached
by traversing a soft reference.

* An object is weakly reachable if it is neither strongly nor softly reachable but
can be reached by traversing a weak reference. When the weak references
to a weakly reachable object are cleared, the object becomes eligible for
finalization.

* An object is phantom reachable if it is neither strongly, softly, nor weakly
reachable, it has been finalized, and some phantom reference refers to it.

* An object is unreachable, and therefore eligible for reclamation, when it is not
reachable in any of the preceding ways.

A4.2 Example GC with WeakReference

You're likely to encounter special reference objects while using tools to look for
memory leaks. Only strong references will directly interfere with garbage collec-
tion. If you find chains of objects linked by weak references, you should be able to
ignore them from a GC perspective. (For additional information on the use of
special reference objects, see the API documentation.)

Figure A-5 shows a graph of objects in memory for a sample program. Let’s
say that the problem with this program is that the Dog objects are not being col-
lected, leading to a memory leak. By using a memory profiler, you can find all the
pointers to the Dog object and follow them back to their GC roots. There are two
GC roots in Figure A-5, a static variable in class Kennel and a stack frame in a
live thread. In this case, the WagTask thread is in an infinite loop, forcing the dog’s
tail to wag. The question is how to get rid of the Dog object.

There are two references pointing to the Dog object, but only one of them is in-
teresting from a GC perspective. The WeakReference from the dogCache is not
important. The interesting reference is the reference from the Tai1, which chains
from a stack frame in a live thread. To free the Dog, and the associated Tail, you
need to terminate the thread that is wagging the Tai1. Once this thread is gone, ev-
erything falls into place. When an object that is pointed to by a WeakReference is
collected, the WeakReference is automatically set to nu11. Figure A-6 shows the
result of terminating the wag thread.

201

202

Appendix A The Truth About Garbage Collection

Stack Heap

WagTask.run Kennel.dogCache

CWeakRe‘f'e rence)
A\ 4
—(Dog)4—
I

——(Tail

Figure A-5 Reference graph

When the thread dies, its stack is removed. Now the only strong reference to
the Dog is via the Tail, and this becomes a simple circular reference that isn’t
reachable from a GC root. The Dog, and by extension the Tail, are no longer
strongly reachable through any references. They are only weakly reachable
through the dogCache. When the collector discovers this (which it does on its
own schedule), it might set the weak reference to nu11, making the Dog and Tail
totally unreachable. They then become candidates for collection and will be re-
moved at the collector’s discretion.

Heap After Heap After
Thread Dies Next GC
|Kenne1 .dogCachel |Kenne1 .dogCachel

A 4 A 4

(WeakReference) (WeakReference)

A 4 \ 4

Dog < | null |

Figure A-6 Results of garbage collection

A.5 References on Garbage Collection 203

A.5 References on Garbage Collection

Arnold, Ken, and James Gosling. The Java Programming Language, Second Edition,
Addison-Wesley, Reading, MA, 1998.

Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification, Second Edi-
tion, Addison-Wesley, Reading, MA, 2000.

Jones, Richard, and Rafael Lins. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management, John Wiley & Sons, New York, 1996.

Lindholm, Tim and Frank Yellin. The Java Virtual Machine Specification, Second Edition,
Addison-Wesley, Reading, MA, 1999.

