
Advanced Theory of Computation

Takehome Exam Answersheet

Behdad Esfahbod

June 21, 2003

Problem 1

The proof for the first two parts is in [1].
For the last part, I cannot get the point, as the language L = {pnqn|n ≥ 0} is in Time(n): A

DTM with an input tape and a work tape, counts up the 0s, then counts down the 1s, and accepts
if the result is zero. Counting from one to n takes 2n steps, with an amortized calculation, so
L ∈ Time(n).

Problem 2

I wonder if I have understood the problem well or not. From the r.e.-completeness of the problems,
I just use the fact that they are infinite.

Consider two arbitrary such sets x and y. As these sets are recursive enumerable, there exist
DTMs Mx and My which are enumerators for x and y respectively. So we define a bijection function
f from x to y, so that f on input a ∈ Dx, simulates Mx, counting the outputs until it outputs a,
say as its nth output. Then f simulates My until it outputs n strings, and grabs the nth output
and returns it.

It is clear that the bijection is decidable. It also works for NP . It has nothing to do with the
fact that it is not known if all NP -complete problems are polynomially isomorphic or not.

Problem 3

Assuming that by DEXT , you mean the same as EXP = ∪c>0DTIME(2cn). Quoting p. 31 of [2]:

Theorem 1 EXP 6= PSPACE.

Proof. From the Time Hierarchy Theorem, we get EXP ⊆ DTIME(2n3/2
)

⊂
6=

DTIME(2n2
). Thus, it suffices to show that if PSPACE = EXP then DTIME(2n2

) ⊆
PSPACE.

Assume that L ∈ DTIME(2n2
). Let $ be a symbol not used in L, and let L′ =

{x$t : x ∈ L, |x| + t = |x|2}. Clearly, L′ ∈ DTIME(2n). So, by the assumption that
PSPACE = EXP , we have L′ ∈ PSPACE; that is, there exists an integer k > 0 such
that L′ ∈ DSPACE(nk). Let M be a DTM accepting L′ with the space bound nk. We
can construct a new DTM M ′ that operates as follows.

On input x, M ′ copies x into a tape and the adds |x|2 − |x| $’s.
Then, M ′ simulates M on x$|x|

2−|x|.

Clearly, L(M ′) = L. Note that M ′ uses space n2k, and so L ∈ PSPACE. Therefore,
DTIME(2n2

) ⊆ PSPACE, and the theorem is proven. 2

1

For the second part, we observe that the same technique does not work, as in EXPSPACE, n
cannot be replace by n2, or the problem would not remain inside EXPSPACE.

From the discussion on page 258 of the same book, it seems that it is not still known if EXP 6=
EXPSPACE. By the way, it can be proved that if EXP 6= EXPSPACE then there exists a tally
set in PSPACE − P .

Problem 4

Definition 1 A set A ⊂ Σ∗ is self-reducible if there exist a partial oredering ≺ on Σ∗ and two
polynomial-time TMs M1 and M2, such that the following hold:

• The question of whether x ≺ y can be decided in p(|x|+ |y) where p is a polynomial,

• For all inputs x, M1(x) generates a list 〈y1, y2, . . . , yk〉 with the property that yj ≺ x for all
1 ≤ j ≤ k (if x is a minimal element of ≺, then M1(x) generrates an empty list); and

• x ∈ A is and only if M2 accepts 〈x, 〈χA(y1), χA(y2), . . . , χA(yk)〉〉, where 〈y1, . . . , yk〉 is the
list generated by m1, and χA(y) = 1 if y ∈ A and χA(y) = 0 if y 6∈ B.

The best thing with this definition is that it tries to formalize our intuitive notion of self-
reducibility. It says that a set problem A is self-reducible if given any case of the problem, if
the solution to some smaller cases is known, this case can be solved easily. Smaller is defined as a
partial order. Infact there is no constraint on the size of the smaller cases, they may be exponentially
large, but what is important is that they are predecessors of the input, and the reducibility can cause
no cycles.

The cons are that there is no restriction on the size of the reduced cases, and none on the length
of the chain of reduced cases that one most solve to solve the given cases. This makes the definition
of no use in complexity theory, as forces no constraint on the time and space of the problems in this
class. A restricted case of this definition which bound the size of reduced parts and the length of
reduced chains to a polynomial is known is tt− self − reducibility.

Problem 5

There is a definition known as weak EXPTIME hierarchy[3], this definition is known to collapse:

EXPH = ∪iΣ
exp
i , where:

Σexp
0 = EXPTIME

Σexp
i = NEXPTIME(Σp

i), for i > 0
Πexp

i = co− Σexp
i

but another way is to define the whole hierarchy recursively:

EXPH = ∪iΣ
exp
i , where:

Σexp
0 = EXPTIME

Σexp
i = NEXPTIME(Σexp

i−1), for i > 0
Πexp

i = co− Σexp
i

∆exp
i = EXPTIME(Σexp

i−1)

This definition, known as the strong exponential hierarchy, is known to collapse[4], but I could not
find the article. The following discussion is based on the later definition.

These propositions are simple to show:

• A ∈ NEXPTIME(A),

• A ∈ EXPTIME(B) ⇒ A ∈ NEXPTIME(B),

• EXPTIMEA = EXPTIMEĀ.

2

The following is immediately followed from above:

Σexp
k ∪Πexp

k ⊆ ∆exp
k+1 ⊆ Σexp

k+1 ∪Πexp
k+1

Lemma 1 Let k ≥ 0.

• If A,B ∈ Σexp
k , then A ∪B,A ∩B ∈ Σexp

k , and Ā ∈ Πexp
k .

• If A,B ∈ Πexp
k , then A ∪B,A ∩B ∈ Πexp

k , and Ā ∈ Σexp
k .

• If A,B ∈ ∆exp
k , then A ∪B,A ∩B, Ā ∈ ∆exp

k .

Proof. Same as the proof for the similar lemma for PH in page 80 of [2]. 2

Problem 6

The class Hn defines an upper bound on the gap between Σn and Σn+1, and Ln defines a lower
bound on that.

Hn = {A ∈ NP |∆n+1 ⊆ ∆n(A)}
Ln = {A ∈ NP |∆n(A) ⊆ ∆n}

Problem 9

Definition 2 For any function t(n), we define RSPACE(t(n)) as the set of languages that there
exists a PTM whose space is bounded by t(n) and accept probability greater than 1

2 . Then

PPSPACE =
⋃
k>0

RSPACE(nk).

It can be shown that PPSPACE is the same class as PSPACE. The idea is the same as
when showing DPSPACE = NPSPACE: Given a PTM M for a problem in PPSPACE, one can
create a DTM M ′, which simulates M for each sequence of random bits, and computes the accept
probability, and accepts iff the accept probability is greater than 1

2 . The new machine M ′ still needs
polynomial space.

References

[1] John Hopcroft and Jeffry D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[2] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. John Wiley & Sons, Inc.,
2000.

[3] Dawar, Gottlob, and Hella. Capturing relativized complexity classes without order. ZEITSCHR:
Mathematical Logic Quarterly (formerly Zeitschrift fuer Mathematische Logik und Grundlagen
der Mathematik), 44, 1998.

[4] L. A. Hemachandra. The strong exponential hierarchy collapses. Proceedings 19-th Annual ACM
Symposium on Theory of Computing, 1987.

3

