
Computer Science Homework 1 Answers

Behdad Esfahbod Student # 993505827

1. Consider that both p and q start with 0, and all messages are lost, then by Termination
and Strong Validity rules, we conclude that they both decide 0. Now consider the case
that both start with 1, and again all messages are lost, then they have to both decide
1.

Now, if p starts with 0, and q with 1, and all messages are lost, from the viewpoint
of p, it is the same scenario as the first consideration above, so it would decide 0, and
for q, it is the same as second case above, so it would decide 1, which contradicts the
Uniform Agreement rule.

2. It can be solved by the following simple protocol:

Round 1: Each process sends its input value to the other process.

Round 2: For every process:

(a) If received something from the other process, then deciede the logical AND of the
received number and your own input value.

(b) Otherwise do not decide.

proof If any of the processes decides, it has done it based on the input value of both
of them, and the rule to decide satisfies both Uniform Agreement and Validity. For
Weak Termination, we observe that if no failures happen, then both of them would
decide in the second run.

3. We give an impossibility proof. The idea is that the same impossiblity proof that was
presented in the class works here: Lets A be an algorithm which guarantees to solve the
problem with Unanimous Termination. Then if no failures happen, they both should
decide. Now we start removing the last message, and since one of them would not
feel different, it would still decide, so the other one should decide as before, but with
one fewer message transfered. Repeating the same technique, we would see that they
should decide even if all messages are lost. Now we can easily show that if p starts
with 0 and q with 1, and all messages are lost, then p should decide 0, and q should
decide 1, which is a contradiction with the fact that algorithm A satisfies Agreement.
So no such algorithm exists.

4. (a) The following algorithm solves the problem:

In each round i do:

i. If not decided yet, send a request message to the other process.

ii. If received a request message from the other process, send your input value
to the other process.

iii. If received from the other process its input value, decide and logical AND of
your own input value and the received value.



proof Validity and Agreement are obviously satisfied, as they both decide the
logical AND of their input values, which would be the same for both os them,
and satisfies Validity.

For Termination, what happens is that each process repeats sending the other
one request messages. As the links are fair, this request message would eventually
arrive. Moreover, we can assume that the message is arrived as many times as
we want, as the sender can continue sending it, and it should arrive again by the
hypothesis. So, the other process, receives the request message, and replies with
its input value. This scenario repeats, until the first process receives the input
value of the other process. And it would eventually happen. So each one would
terminate. And after both have decided, they would become quiet.

(b) In that impossiblity proof, we assumed that we can lose all messages after a certain
time, and the processes have to decide the same way they were doing. Now with
fair links, we cannot do that. For example in the algorithm above, if we break
the link, they would send request messages infinitly many times, and would never
decide.

(c) We go to prove that no such halting algorithm exists. The proof is pretty like
the one presented in the class, with the difference that we cut the links up to a
certain time.

Suppose there exists and algorithm solving the problem. So considering a scenario
that both p and q start with 0, and they finally decide 0 and halt. Now assume
that the last message is sent by q to p, and q halts in time t. So now we decide
that this last message and all messages after that until time t are going to be
lost. Now, q do not feel any difference, and halts as before, as p cannot send any
messages to q before time t. So p should decide 0 and halt too, and we have one
fewer message. Continuing the argument, we can show that with all messages lost
until a certain time t, the should both decide 0 and halt before t.

Not again, doing the same discussion with 1, shows that they should decide 1,
with all messages lost before t. Combining the too, p starting with 0, and q with
1, means that p should decide 0, and q should decide 1, which is a contradiction.
So no such algorithm exists.


