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1 Training/Testing Error Curves (1.5%)

The crossing pair of lines are exactly the ones as in graphs below. In other
words, training set error crosses Bayes error, but test set error does not.
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error

complexity0

1

most complex
Bayes error

test

training
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∗Not registered in the course yet. Already talked to Sam and will do late-registration after
administration problem is resolved.
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2 Learning Random Boolean Functions (2.5%)

• a: Let N be the multiset of training cases.

a = E(
∑
x∈N

Ax) =
∑
x∈N

E(Ax)

where Ax is a random variable that is zero if x 6∈ N and 1 otherwise.

Ax = 1− p(x 6∈ N ) = 1−
∏

x0∈N
p(x 6= x0) = 1− (

2k − 1
2k

)N

Putting together:

a =
∑
x∈N

E(Ax) = 2k

(
1− (

2k − 1
2k

)N

)
=

2k − (2k − 1)N

2k(N−1)

• b: Let M be the multiset of test cases.

b = E(
∑

x∈M
Bx) =

∑
x∈M

E(Bx)

where Bx is a random variable that is zero if x 6∈ N and 1 otherwise.

Bx = p(x ∈ N ) =
a

2k

Putting together:

b =
∑

x∈M
E(Bx) =

Ma

2k

• Lowest error rate:

0 ∗ b + 1
2 ∗ (M − b)
M

=
M − b

2M

Algorithm: If test case has been in training cases, return the output to
one such training case; return 0 otherwise.

Argument: For seen cases, error is zero. For the rest, they are indepen-
dently and uniformly distributed among classes, so no difference what to
decide.

• Generalization: Yes. Because the error rate

M − b

2M
= 1− a

2k

is independent of the test set.
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3 Class-Conditional Gaussians (3%)

•

p(y = k|x) =
p(x|y = k)p(y = k)

p(x)
=

p(x|y = k)αk∑K
k=1 p(x|y = k)αk

=
αk exp

{
−

∑D
i=1

1
2σ2

i

(xi − µki)2
}

∑K
k=1 αk exp

{
−

∑D
i=1

1
2σ2

i

(xi − µki)2
}

αk

•

`(θ;D) = log p(y1, x1, y2, x2, . . . , yM , xM |θ)

= log
M∏

j=1

p(yj , xj |θ) =
M∑

j=1

log p(yj , xj |θ) =
M∑

j=1

(
log p(xj |yj , θ) + log p(yj)

)
=

M∑
j=1

[
−1

2

D∑
i=1

log(2πσ2
i )−

D∑
i=1

1
2σ2

i

(xj
i − µyji)2 + log αyj

]

•
∂`(·)
∂µki

=
1
σ2

i

∑
j: yj=k

(µk − xj
i )

∂`(·)
∂ log σ2

i

=
M∑

j=1

∂

∂ log σ2
i

[
−1

2
log σ2

i −
1
2
e− log σ2

i (xj
i − µyji)2

]

= −M

2
+

1
2σ2

i

M∑
j=1

(xj
i − µyji)2

∂`(·)
∂αk

=
∑

j: yj=k

1
αk

• ∑
j: yj=k

(µk − xj
i ) = 0 ⇒ µk =

∑
j: yj=k xj

i∑
j: yj=k 1

−M

2
+

1
2σ2

i

M∑
j=1

(xj
i − µyji)2 = 0 ⇒ σ2

i =
1
M

M∑
j=1

(xj
i − µyji)2

Using Lagrange Multipliers for class priors to sum them up to one:

L(α, λ) = `(·) + λc(α)

c(α) = 1−
K∑

k=1

αk

Means:

∂L(·)
∂α

= 0 ⇒ λ +
∑

j: yj=k

1
αk

= 0
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∂L(·)
∂λ

= 0 ⇒ 1−
K∑

k=1

αk = 0

Solving for λ first and σk next gives:

λ = M

αk =

∑
j: yj=k 1
M

and observe that fortunately αk’s are all positive and less than one.

4



4 Handwritten Digit Classification (11%)

The images are in row-major, top to bottom, left to right.

4.1 K-NN Classifier

I broke ties by getting the first item, i.e. the one with smallest index. This way
k = 1 turned out to be the best k as can be seen in the graph below:
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4.2 Conditional Gaussian Classifier Training

For the means, I took black for zero, and white for maximum value over all
means, using linear grayscale in between. For log of covariances, mapped black
to the minimum over all values of the diagonals and white to the maximum of
them, again using linear grayscale in between. The image of covariances is a lot
less blurred if I draw covariance diagonals themselves instead of the log of them
and map colors linearly.
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4.3 Näıve Bayes Classifier Training

Black represents the minimum over all values of the logs and white represents
the maximum of them, using linear grayscale in between.
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4.4 Performance Evaluation

Gaussian-conditional Näıve Bayes
training set -63.7881 -12.7559

test set -62.3942 -12.7017

Table 1: Average conditional log likelihood

K-NN Gaussian-conditional Näıve Bayes
1 1 (0.25%) 0 (0.00%) 162 (23.14%)
2 11 (2.75%) 5 (1.25%) 174 (24.86%)
3 21 (5.25%) 13 (3.25%) 141 (20.14%)
4 14 (3.50%) 11 (2.75%) 147 (21.00%)
5 19 (4.75%) 17 (4.25%) 178 (25.43%)
6 7 (1.75%) 9 (2.25%) 93 (13.29%)
7 13 (3.25%) 14 (3.50%) 157 (22.43%)
8 26 (6.50%) 21 (5.25%) 225 (32.14%)
9 11 (2.75%) 15 (3.75%) 227 (32.43%)
0 2 (0.50%) 4 (1.00%) 77 (11.00%)

total 125 (3.125%) 109 (2.725%) 1581 (22.59%)

Table 2: Error cases on test sets

K-NN Gaussian-conditional Näıve Bayes
1 1 (0.14%) 3 (0.43%) 87 (21.75%)
2 25 (3.57%) 12 (1.71%) 106 (26.50%)
3 26 (3.71%) 11 (1.57%) 91 (22.75%)
4 31 (4.43%) 19 (2.71%) 85 (21.25%)
5 22 (3.14%) 13 (1.86%) 110 (27.50%)
6 9 (1.29%) 5 (0.71%) 60 (15.00%)
7 23 (3.29%) 12 (1.71%) 89 (22.25%)
8 57 (8.14%) 27 (3.86%) 122 (30.50%)
9 34 (4.86%) 22 (3.14%) 134 (33.50%)
0 9 (1.29%) 6 (0.86%) 59 (14.75%)

total 237 (3.39%) 130 (1.86%) 943 (23.58%)

Table 3: Error cases on training sets
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