Common-Deadline
Lazy Bureaucrat Scheduling
Problems

Behdad Esfahbod, Mohammad Ghodsi,
Al Sharifi

{behdad,ghodsi}@sharif.edu,
ali@bamdad.org

Computer Engineering Department
Sharif University of Technology
Tehran, Iran



Introduction

Scheduling problems: A number of jobs to be performed by some
employees.

Common studies: To be as efficient as possible. The employer’s
point of view.

Lazy bureaucrat: To be as inefficient as possible. The lazy
employee’s point of view. These are called Lazy Beauracrat
Scheduling Problems (LBSP).

Some restrictions are needed to get out of degenerate cases.

Similar considerations: Shortest vs longest path problems.



Problem Definition

A set J of jobs j1,...,jn, Processing times (job lengths) ¢q,...,tn,
arrival times a1,...,an, deadlines d1,...,d,.

Jobs should be processed completely, if ever. We consider the case
with no preemption.

Hard deadlines. Processed jobs should be done so not before their
arrival neither after their deadline. We call the interval [a;,d;] the
window for job 4.

Offline scheduling. We now the arrival times and deadlines
beforehand.

All the numbers are non-negative integers. Assume WLOG that
there is a job arriving at time 0. Let D = maz(d;).



More Definitions

e Executable Job: Job j; is executable at time t, iff it is not
processed yet, and a; <t < d; — t;.

o Greedy Requirement: At any time, the bureaucrat should work
on an executable job, if there is any.

e The goal is to be as inefficient as possible. This is captured by any
of the following objective functions that is to minimize.



Objective Functions

1. [min-time-spent]: Minimize the total amount of time spent
working.

2. [min-weighted-sum]: Minimize the weighted sum of completed jobs.

3. [min-makespan]: Minimize the makespan, the maximum completion
time of the jobs.

4. [min-number-of-jobs]: Minimize the total number of completed
jobs.

Objective functions 1 and 4 are special cases of 2.
If all jobs have the same arrival time, the objective functions 1 and 3
are equivalent.



Some Previous Results

Non-preemptive and multi-employee cases have also been studied.
They are not listed here.

e | BSP is strongly NP-hard under all objective functions and is not
approximable to within any fixed factor.

e LBSP with the same arrival times for all jobs, is weakly NP-hard,

and can be solved by a pseudo-polynomial dynamic programming
algorithm.

e LBSP with all the jobs having unit lengths, can be solved in

polynomial time by the Latest Deadline First (LDF) scheduling
policy.



Some Previous Results (continueq)

Assuming for each job 2, d; — a; < 2t;, LBSP can be solved in
O(nD max(n,D)) time.

Even with a bound on § (the ratio of the longest job to the
shortest job), LBSP is strongly NP-hard. It cannot be
approximated to within a factor of 6 — ¢, for any € > 0O, unless
P = NP.

Given bounds on R (the maximum ratio of window length to job
length) and &, LBSP can be solved in O(Dn#199)

Assuming d; — a; < 2t; for each job ¢ (R < 2), LBSP can be solved
in O(nD) time.



Our Problem — Notation

e Common-Deadline LBSP (CD-LBSP): When deadlines for all
jobs are the same (D).

e CD-LBSP[objective-function]: When considered with one of
defined objective functions.

e CD-LBSP[*]: All/any of the objective functions.



Results

CD-LBSP[*] is still NP-hard.

CD-LBSP [min-number-of-jobs] is not approximable to within any
fixed factor.

There is a tight 2-approximation algorithm for
CD-LBSP [min-makespan].

CD-LBSP[*] is weakly NP-hard: There exists a pseudo-polynomial
time dynamic programming algorithm.



NP-Hardness
Theorem 1 CD-LBSP[*] is NP-hard.

Proof
e Reduce the Subset Sum problem to this problem,

o Given: § = {z1,...,zn} Of n positive integers, where X7'_,x; = s,
and integer b (0 <b < s),

e Is there any T' C S, satisfying > 7z = b7
e WLOG, we assume that b < |5]| and z; < b for all s.

e Construct an instance of CD-LBSP containing n + 1 jobs.



NP-Hardness (continued)

All deadlines D = 2s,

Vz; € S, define job j; with a; = 0, and t; = 2x;,

Define j,41 with a,41 =2band ¢,4,1 =2s —2b— 1.

The employee can finish his work by time 2s or 2s — 1,

He can finish by 2s — 1 iff he finds a solution for the Subset Sum

problem.

10



Approximablity

Theorem 2 CD-LBSP [min-number-of-jobs] is not approximable to
within any fixed factor A > 1, unless P = NP.

Proof

e Reduce Subset Sum problem again! This time to reach
contradiction.

e Assume that there is an approximation algorithm with a fixed
factor A.

e Let m=[A]| and D=b+ m(n+ 2)s (a huge number).

11



Approximablity (continued)
e Construct an instance of CD-LBSP [min-number-of-jobs] containing
the following jobs, all with deadline D:
— Vz; € S, define an element job j3; having a; = 0, and t; = x;,
— Define one long job, j,41 with a,,41 =06 and ¢,41 =D — 0.
— And define m(n 4+ 2) — 1 extra jobs (lots of them), all having

arrival times b, and processing times s.

e T he bureaucrat wants to do as few jobs as possible: He should
process the long job, to avoid too many extra jobs,

e SO he can process as few as n + 1 jobs iff he finds a solution for
the Subset Sum problem.

12



Approximablity (continued)

e [ he hypothetical A-approximation would produce at most
m(n + 1) jobs.

e There are m(n+ 2) — 1 extra jobs, that all can be processed if the
long job is not.

e SO the approximation algorithm is forced to produce the optimal
solution = solution for the Subset Sum problem = P = NP.

Corollary 1 CD-LBSP [min-weighted-sum] iS not approximable to
within any fixed factor A > 1, unless P = NP.

13



Approximation

Theorem 3 The Shortest Job First (SJF) scheduling policy is a
2-approximation algorithm for CD-LBSP [min-makespan] and this bound

Is tight.

Proof

e Let oppr be an optimal solution and o be the schedule which the
SJF policy has generated, and OPT and SJF be their makespans
respectively,

e We show that SJUF—- OPT < OPT,

e WLOG suppose that j1,...,J, are the jobs processed in o in that
order,

e Let j, € o be the job satisfying startq(o) < OPT < finish (o),

14



Approximation (continued)
We know that a; < OPT for all jobs,
SJF policy forces that ¢,41 <t,q40 < ... < i,
Greedy requirement forces that 5, € oppr for all g+ 1 <: <k
If jq € copr then SUF— OPT < Zii“:qtz- < OPT, and we are done,

Otherwise, there exists some job in oppr that is arrived before jq,
and not shorter than j4, which is not processed in o, call it jp,

So we have

SIF— OPT <tg+ i i1t <tp+ X 4 1t; < OPT.

1

15



Tightness

Given n and 0 < e < 1, we construct an instance of CD-LBSP with
n jobs, which SJF does no better than 2 — ¢,

All jobs have a; = 0 and d; = D, where
D=n—-342L—-1=n+42L—4 with L =2n/e:

t1=L—-1,to =1L, t3=L+ 1, ti=1(4§7j§n),

OPT would process all unit jobs and then j53, having makespan
OPT=n—-3+4+L+1=n+4+L -2,

SJF would process j4,...,9n, J1, and jo having makespan
SIF=n—-34+L—-—1+4+L=n-+2L—4.

With some magical math, we would have % > 2 — €. O

16



Pseudo-Polynomial Time Algorithms

e Assume that the jobs are numbered in order of their arrival times,

o Let T, ={j;,..-,dn}, Ty ={dir---»Jk}

e \We can assume that in the optimal schedule, the consecutive jobs
are performed in order of their arrival times,

Lemma 1 For a given (T;,a,U), we can find an optimal schedule
without any gaps from some jobs in T;, and up to time «, so that all
Jjobs in U appear in the schedule, if any such schedule exists, in time
O(na).

Proof It can be solved much like the binary knapsack problem. O

17



Pseudo-Polynomial Time Algorithms (continued)
Theorem 4 CD-LBSP[*] is weakly NP-hard.

Proof

e Let P; be the subproblem of scheduling the jobs in T;. P; is the
original problem,

e Let o be the first rest time in an optimal schedule o for B,

e SO the schedule can be broken into two independent subschedules,
one before o, and one after ¢,

e For o« to be a rest time, there are some jobs forced to be in the
first schedule,

18



Pseudo-Polynomial Time Algorithms (continued)

The first subschedule can be found by applying the lemma from
previous page,

The second one is the optimal solution to subproblem P, where j;
is the first job arriving after «,

All we need to do is to search for «.
This all takes time O(n2D?) to solve P;.

So CD-LBSP[*] is weakly NP-hard.

19



Conclusion

We studied a new class of the Lazy Bureaucrat Scheduling Problems
(LBSP), called common-deadline LBSP, where the deadlines of all
jobs are the same. We proved that this problem is still NP-hard under
all four pre-defined objective functions. We also showed that this
problem is not approximable to within any fixed factor in cases of
[min-weighted-sum] and [min-number-of-jobs] objective functions. The
problem is shown to have a tight 2-approximation algorithm under
[min-makespan]. But, it is still open whether it is approximable under
[min-time-spent]. In the rest of the paper, we presented
pseudo-polynomial time dynamic programming algorithms for this
problem under all objective functions. Further work on this problem is
underway.

Acknowledgements The authors would like to thank the anonymous
referees for their useful comments.

20



References

Arkin, E. M., Bender, M. A., Mitchell, J. S. B., Skiena, S. S.: The
lazy bureaucrat scheduling problem. Workshop on Algorithms and
Data Structures (WADS'99), LNCS 1663, pp. 122-133,
Springer-Verlag, 1999.

Gary, M. R., Johnson D. S.: Computers and intractability, a guide to
the theory of NP-completeness. W. H. Freeman and Company, New
York, 1979.

Farzan, A., Ghodsi, M.: New results for lazy bureaucrat scheduling
problem. 7th CSI Computer Conference (CSICC’'2002), Iran
Telecommunication Research Center, March 3—5, 2002, pp. 66—71.

Hepner, C., Stein, C.: Minimizing makespan for the lazy bureaucrat
problem. Scandinavian Workshop on Algorithm Theory (SWAT'2002),
LNCS 2368, pp. 4050, Springer-Verlag, 2002.

21



