
Fault-Tolerant Wait-Free

Shared Objects

JAYANTI, CHANDRA AND TOUEG

(1998)

A presentation by

Behdad Esfahbod

behdad@cs.toronto.edu

CSC2415, April 14 2004

Problem Statement

• Concurrent asynchronous processes

• Typed linearizable shared objects

• Wait-free implementations

• Failure of processes

• Failure of base objects (new)

1

Problem Statement

• Concurrent asynchronous processes

• Typed linearizable shared objects

• Wait-free implementations

• Failure of processes

• Failure of base objects (new)

1-a

Problem Statement

• Concurrent asynchronous processes

• Typed linearizable shared objects

• Wait-free implementations

• Failure of processes

• Failure of base objects (new)

1-b

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-a

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-b

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-c

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-d

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-e

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-f

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-g

Object Failures

Responsive

• Crash

• Omission

• Arbitrary

Non-responsive

• NR-Crash

• NR-Omission

• NR-Arbitrary

2-h

Some Terminology

A t-tolerant implementation I for

failure mode F

– Wait-free

– Correct

– At most t base objects fail by F

3

More Terminology

• Resource complexity

• Self-implementation

• Gracefully degrading

4

More Terminology

• Resource complexity

• Self-implementation

• Gracefully degrading

4-a

More Terminology

• Resource complexity

• Self-implementation

• Gracefully degrading

4-b

Organization

• Model and Definitions (12 pages)

• Tolerating responsive failures (11 pages)

• Tolerating non-responsive failures (5 pages)

• Feasibility of graceful degradation (15 pages)

5

The Model

I/O Automata

• Non-deterministic automaton

• Finite/infinite set of states, including starting states

• Sets of input/output/internal events

• Transition relation (s, e, s′), the steps

6

The Model
continued

I/O Automata (continued)

Enabled event e at state s:

∃s′ : (s, e, s′) ∈ transition relation.

Execution of automaton A: s0, e1, s1, e2, s2,

History of an execution: e1, e2,

7

The Model
continued

I/O Automata (continued)

A new automaton A can be constructed by composing a

set of “compatible” automata A1, A2, . . . , Ak.

The history of a component Ai is denoted by H|Ai.

8

The Model
continued

Object Type

Type T is a tuple (OP, RES, G, τ)

• OP is the set of operations

• RES is the set of responses

• G is the sequential specification of T

• τ , the transformation functions is explained later!

9

T is deterministic...

T is total... We only deal with total types.

T is finite...

9-1

The Model
continued

Object Type (continued)

S S1S0

(propose 1, 0)
(propose 0, 0)

(propose 0, 0) (propose 1, 1)

(propose 0, 1)
(propose 1, 1)

Sequential specification of consensus

10

The Model
continued

Objects and Processes

Both are modeled as automata

Obect O:

• type T

• initial state s of T

Processes

• can be made to crash

• are deterministic, unless mentioned otherwise

11

The Model
continued

Objects and Processes

Both are modeled as automata

Obect O:

• type T

• initial state s of T

Processes

• can be made to crash

• are deterministic, unless mentioned otherwise

11-a

The Model
continued

Objects and Processes

Both are modeled as automata

Obect O:

• type T

• initial state s of T

Processes

• can be made to crash

• are deterministic, unless mentioned otherwise

11-b

The Model
continued

Concurrent System

Is the automaton composed from

• Processes P1, P2, . . . , Pn, and

• Objects O1, O2, . . . , Om.

shown by (P1, P2, . . . , Pn;O1, . . . , Om).

For each Pi and Oj and object operation op:

• invoke(Pi, op, Oj)

• respond(Pi, op, Oj)

12

The Model
continued

Concurrent System

Is the automaton composed from

• Processes P1, P2, . . . , Pn, and

• Objects O1, O2, . . . , Om.

shown by (P1, P2, . . . , Pn;O1, . . . , Om).

For each Pi and Oj and object operation op:

• invoke(Pi, op, Oj)

• respond(Pi, op, Oj)

12-a

Matching response r and invocation i.

An operation is an invocation and its matching response.

Incomplete operation: no matching response.

Operation p precedes q...

Concurrent operations.

Sequential history H: no concurrent operation.

12-1

The Model
continued

Well-formed History

• No prefix of H|Pi has more than one

incomplete operation

• (H|Pi)|Oj begins with an invocation and has

alternating invocation and responses

13

The Model
continued

Fairness

Execution E is fair:

• If E is finite, no internal or output event is enabled in

the final state of E

• If E is infinite, for each internal or output event e, E

contains either infinitely many occurrences of e or

infinitely many states in which e is not enabled

14

The Model
continued

Fairness

Execution E is fair:

• If E is finite, no internal or output event is enabled in

the final state of E

• If E is infinite, for each internal or output event e, E

contains either infinitely many occurrences of e or

infinitely many states in which e is not enabled

14-a

The Model
continued

Linearizability

A linearization of H with respect to (T, s) is a sequential
history S which:

• is legal from state s of T

• includes every complete operation in H

• either does not include incomplete invokes, or includes them with

an arbitrary response.

• includes no other operation

• if oper <H oper′ then oper <S oper′

15

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16-a

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16-b

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16-c

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16-d

The Model
continued

Well-Behavedness

Linearizablity looks like a good measure for

well-behavedness. But not all objects are linearizable:

safe register, consensus with safe-reset, 1-reader

1-writer register, 1-reader 1-writer safe register.

For object O of type T = (OP, RES, G, τ)

initialized to state s, and history H in execution

E, we say that O is well behaved in E if τ(H) is

linearizable with respect to (T, s).
16-e

The Model
continued

Implementation

Let T be a type and s be a state of T .

L = (T∞,T∈, . . .) is a list of base types.

Σ = (s1, s2, . . .) is a list of initial states for Ti’s.

I(O∞,O∈, . . .) is an implementation of (T, s) from (L,Σ)

for processes P1, P2, . . . , PN .

17

The Model
continued

Implementation (continued)

An implementation is wait-free if every derived object O has this

property: if E is an execution of (P1, P2, . . . , Pn;O) in which all base

objects of O are wait-free, then O is wait-free in E.

An implementation is k-bounded wait-free if it is wait-free and every

derived object O has this property: if E is an execution of

(P1, P2, . . . , Pn;O) and for all Pi, between an invocation on O by Pi

and its matching response, Pi has no more than k invocations on all

base objects of O put together.

18

Failure Modes

A failed object may return special response ⊥

A process does not invoke operations on O

anymore after it receives ⊥ from O

19

Failure Modes
continued

Responsive Failure Modes

• Crash

• Omission

• Arbitrary

20

Failure Modes
continued

Crash

Object O fails in execution E by crash if it is not
well-behaved, but:

• O is wait-free in E.

• Responses from O belong to RES ∪ ⊥. An operation that returns

⊥ is an aborted operation.

• For operations op and op′ in the history H, if op precedes op′ and op

is an aborted operation, then op′ is also an aborted operation.

• Let H′ be the history obtained by removing all aborted operations

in H. Then, τ(H′) is linearizable with respect to (T, s).

21

Failure Modes
continued

Omission

Object O fails in execution E by omission if it is not
well-behaved, but:

• O is wait-free in E.

• Responses from O belong to RES ∪ ⊥.

• Let H′ be the history obtained by removing the response events

associated with the aborted operations in H. Then, τ(H′) is

linearizable with respect to (T, s).

22

Failure Modes
continued

Arbitrary

Object O fails in execution E by the arbitrary

failure mode if it is not well-behaved, but is

wait-free in E.

23

Failure Modes
continued

Non-responsive Failure Modes

• NR-Crash

• NR-Omission

• NR-Arbitrary

24

Failure Modes
continued

NR-Crash

Object O fails in execution E by NR-crash if it is

not wait-free, but:

• O is well behaved in E.

• The number of responses from O is finite.

25

Failure Modes
continued

NR-Omission

Object O fails in execution E by the

NR-omission if it is not wait-free, but is well

behaved in E.

26

Failure Modes
continued

NR-Arbitrary

Object O fails in execution E by the

NR-arbitrary if it fails in E.

27

Fault-Tolerance

Implementation I is called t-tolerant if the derived object

O = I(O1, O2, . . .), for every execution E of the concurrent

system (P1, P2, . . . , PN ;O), if at most t objects among

O1, O2, . . . fail, and they fail by F, then O is correct.

28

Graceful Degradation

Implementation I is called gracefully degrading for failure

mode F if the derived object O = I(O1, O2, . . .), for every

execution E of the concurrent system (P1, P2, . . . , PN ;O),

if all faulty objects among O1, O2, . . . fail by F, then either

O is correct or O fails by F.

29

Fault-Tolerance & Graceful Degradation

Compositional Lemma

Suppose that T has a t-tolerant implementation from L for failure

mode F, where L = (T1, T2, . . . , Tn) is a list of types. Furthermore,

suppose that each Ti has a ti-tolerant gracefully degrading

implementation from Li for failure mode F. Then we have:

1. T has a t′-tolerant implementation from L′ for failure mode F,

where L′ = L1 · L2 · . . . · Ln and

t′ = MinSum(t + 1, 〈t1 + 1, t2 + 1, . . . , tn + 1〉) − 1.

2. If the t-tolerant implementation of T from L is gracefully

degrading for F, then T has a t′-tolerant gracefully degrading

implementation from L′ for failure mode F.

30

Fault-Tolerance & Graceful Degradation

Compositional Lemma

Suppose that T has a t-tolerant implementation from L for failure

mode F, where L = (T1, T2, . . . , Tn) is a list of types. Furthermore,

suppose that each Ti has a ti-tolerant gracefully degrading

implementation from Li for failure mode F. Then we have:

1. T has a t′-tolerant implementation from L′ for failure mode F,

where L′ = L1 · L2 · . . . · Ln and

t′ = MinSum(t + 1, 〈t1 + 1, t2 + 1, . . . , tn + 1〉) − 1.

2. If the t-tolerant implementation of T from L is gracefully

degrading for F, then T has a t′-tolerant gracefully degrading

implementation from L′ for failure mode F.

30-a

Fault-Tolerance & Graceful Degradation

Compositional Lemma

Suppose that T has a t-tolerant implementation from L for failure

mode F, where L = (T1, T2, . . . , Tn) is a list of types. Furthermore,

suppose that each Ti has a ti-tolerant gracefully degrading

implementation from Li for failure mode F. Then we have:

1. T has a t′-tolerant implementation from L′ for failure mode F,

where L′ = L1 · L2 · . . . · Ln and

t′ = MinSum(t + 1, 〈t1 + 1, t2 + 1, . . . , tn + 1〉) − 1.

2. If the t-tolerant implementation of T from L is gracefully

degrading for F, then T has a t′-tolerant gracefully degrading

implementation from L′ for failure mode F.

30-b

Fault-Tolerance & Graceful Degradation

Corollary — Introducing Fault-Tolerance

Suppose that T has a (0-tolerant) implementation from

(T1, T2, . . . , Tn). Furthermore, suppose that each Ti has a t-tolerant

gracefully degrading implementation from Li for failure mode F,

where Li is some list of types. Then we have:

1. T has a t-tolerant implementation from L1 · L2 · . . . · Ln for failure

mode F.

2. If the (0-tolerant) implementation of T from (T1, T2, . . . , Tn) is

gracefully degrading for F, then T has a t-tolerant gracefully

degrading implementation from L1 · L2 · . . . · Ln for failure mode F.

31

Fault-Tolerance & Graceful Degradation

Corollary — Self Implementation

If T has a t-tolerant gracefully degrading self-implementation I of

resource complexity n for failure mode F, then T has a

(t2 + 2t)-tolerant gracefully degrading self-implementation I ′ of

resource complexity n2 for F.

Corollary — Booster Lemma

If T has a 1-tolerant gracefully degrading self-implementation of

resource complexity k for failure mode F, then T has a t-tolerant

gracefully degrading self-implementation of resource complexity

O(tlog2 k) for F.

32

Fault-Tolerance & Graceful Degradation

Corollary — Self Implementation

If T has a t-tolerant gracefully degrading self-implementation I of

resource complexity n for failure mode F, then T has a

(t2 + 2t)-tolerant gracefully degrading self-implementation I ′ of

resource complexity n2 for F.

Corollary — Booster Lemma

If T has a 1-tolerant gracefully degrading self-implementation of

resource complexity k for failure mode F, then T has a t-tolerant

gracefully degrading self-implementation of resource complexity

O(tlog2 k) for F.

32-a

Fault-Tolerance & Graceful Degradation

Lemma — Graceful Degradation for
Arbitrary Failures

If T has a t-tolerant k-bounded implementation from L for

arbitrary failures, then T has a t-tolerant gracefully

degrading k-bounded implementation from L for

(responsive) arbitrary failures.

33

Tolerating Responsive Failures

• consensus

• register

• Universal implementation

34

Tolerating Responsive Failures

• consensus

• register

• Universal implementation

34-a

Consensus

• Integrity: all responses are either 0 or 1

• Weak integrity: all responses are either 0, 1, or ⊥

• Validity: if there is a response v ∈ {0,1}, then there has

been an invocation of propose v

• Agreement: for any two responses v1, v2 ∈ {0,1},

v1 = v2

35

Consensus
continued

Proposition — Correctness

Object O of type consensus is correct in E iff it:

• is wait-free,

• satisfies integrity,

• satisfies validity,

• satisfies agreement.

36

Consensus
continued

Proposition — Omission

Object O of type consensus fails by omission in E iff it

fails in E and it:

• is wait-free,

• satisfies weak integrity,

• satisfies validity,

• satisfies agreement.

37

Fault-Tolerant Consensus

Crash and Omission

O1, O2, . . . , Ot+1 :

consensus objects, initialized to the uncommitted state

Procedure Propose(p, vp, O) /* vp ∈ {0,1} */

estimatep, w, k : integer local to p

begin

estimatep := vp

for k := 1 to t + 1

w := propose(p, estimatep, Ok)

if w 6= ⊥ then estimatep := w

return(estimatep)

end

t-tolerant self-implementation of consensus for omission

38

Self-implementation.

t + 1 base objects, resource optimal.

Not trivial, all work done is in synchronous message passing systems.

We are in asynchronous shared-memory systems.

Is not gracefully degrading.

There is a gracefully degrading consensus for OMISSION, by 2t + 1

which is optimal.

There is NO gracefully degrading consensus for CRASH.

38-1

Fault-Tolerant Consensus

Arbitrary Failures

Using divide-and-conquer:

• O1, a d(t − 1)/2e-tolerant consensus object

• O2, a b(t − 1)/2c-tolerant consensus object

• 10t + 3 (0-tolerant) consensus objects:

A0[1 . . .3t + 1], A1[1 . . .3t + 1], B[1 . . .4t + 1]

39

Fault-Tolerant Consensus
continued

Arbitrary Failures

Efficient t-tolerant self-implementation of consensus for

arbitrary farilures.

A0[1 . . .3t + 1], A1[1 . . .3t + 1], B[1 . . .4t + 1] : (0-tolerant) consensus objects,
initialized to the uncommitted state

O1 : dt−1
2
e-tolerant consensus objects, initialized to the uncommitted state

O2 : bt−1
2
c-tolerant consensus objects, initialized to the uncommitted state

Procedure Propose(p, vp,O)
countp[0..1], WitnessCountp[0..1], beliefp, ans1p, ans2p, v′

p, i, w : integer local to p

40

1 countp[0..1], WitnessCountp[0..1] := (0,0)

2 Phase 1: for i := 1 to 3t + 1
3 w := f-propose(p, vp, Avp[i])
4 if w = vp then countp[vp] := countp[vp]+1

5 Phase 2: ans1p := f-propose(p, vp, O1)

6 Phase 3: for i := 1 to 4t + 1
7 w := f-propose(p, ans1p, B[i])
8 WitnessCountp[w] := WitnessCountp[w]+1

9 Phase 4: for i := 1 to 3t + 1
10 w := f-propose(p, vp, Avp

[i])
11 if w = vp then countp[vp] := countp[vp]+1

12 Phase 5: Choose beliefp s. t. WitnessCountp[beliefp] > WitnessCountp[beliefp]
13 if WitnessCountp[beliefp] ≥ 3t + 1 and countp[beliefp] ≥ 2t + 1 then
14 return(beliefp)
15 if WitnessCountp[beliefp] ≥ 2t + 1 and countp[beliefp] ≥ t + 1 then
16 v′

p := beliefp
else

17 v′
p := vp

18 ans2p := propose(p, v′
p, O2)

19 return(ans2p)

41

Fault-Tolerant Consensus

Theorem

The algorithm on the previous page presents a t-tolerant

gracefully degrading self-implementation of consensus for

arbitrary failures of resource complexity O(t log t).

42

Adding Reset Capability

Procedure Reset(p,O)

i : integer local to p

begin

reset(p, O1)

reset(p, O2)

for i := 1 to 3t + 1

reset(p, A0[i])

reset(p, A1[i])

for i := 1 to 4t + 1

reset(p, B[i])

return(ack)

end

Reset procedure of the t-tolerant self-implementation of consensus

with safe-reset for arbitrary failures.

43

Register

• read and write operations

• unbounded register = ∞-valued register

• boolean register = 2-valued register

44

R1, R2, · · · , R2t+1: 1-reader 1-writer safe registers, initialized to

the initial value of the derived register

Apply(Pr, read,R) Apply(Pw,write v,R)

val, i : integers, local to Pr i : integer, local to Pw

S : multi-set of integers, local to Pr

begin begin
S := ∅ for i := 1 to 2t + 1

for i := 1 to 2t + 1 apply(Pw,write v, Ri)

val := apply(Pr, read, Ri) return ack
S := S ∪ {val} end

return mode(S)

end

t-tolerant self-implementation of 1-reader 1-writer safe

register for arbitrary failures.

45

Fault-Tolerant Register

Theorem

register has a t-tolerant gracefully degrading

self-implementation for arbitrary failures.

46

Universality Results

Theorem — Herlihy (1991)

For all types T , there is a k such that T has a (0-tolerant)

k-bounded implementation from {consensus with

safe-reset, unbounded register}.

Theorem — Plotkin (1989)

For all finite types T , there is a k such that T has a

(0-tolerant) k-bounded implementation from {consensus

with safe-reset, boolean register}.

47

Fault-Tolerant Impl. of Generic Types

for x in {boolean, unbounded}

Corollary

Let T be any (if x = boolean → finite) type.

• T has a t-tolerant gracefully degrading implementation from

{consensus with safe-reset, x register} for arbitrary failures.

• If each of consensus with safe-reset and x register has a

0-tolerant gracefully degrading implementation from T for

arbitrary failures, then T has a t-tolerant gracefully degrading

self-implementation for arbitrary failures.

48

Fault-Tolerant Impl. of Common Types

Corollary

compare&swap, move, and m-m swap have t-tolerant
self-implementations for arbitrary failures.

Corollary

queue, stack, test&set, and fetch&add have t-tolerant

self-implementations for arbitrary failures. These

implementations are for two processes.
49

Tolerating Non-responsive Failures

• parallel access to objects

• consensus, impossible!

• register

• Universal randomized implementation

50

Consensus Revisited

Theorem

There is no 1-tolerant implementation of consensus, even

for two processes, for NR-crash(or for unfairness to a

known process).

Theorem — Loui, Abu-Amara, Dolev, Dwork, and Stockmeyer

The consensus problem for n processes has no solution if

processes may communicate only via registers and at

most one process may crash.
51

Consensus Revisited

Theorem

There is no 1-tolerant implementation of consensus, even

for two processes, for NR-crash(or for unfairness to a

known process).

Theorem — Loui, Abu-Amara, Dolev, Dwork, and Stockmeyer

The consensus problem for n processes has no solution if

processes may communicate only via registers and at

most one process may crash.
51-a

Consensus Revisited
continued

Corollary

If a type T implements consensus for two processes, then

T has no 1-tolerant implementation, for two processes, for

NR-crash or for unfairness to a known process.

Corollary — Common Types

None of the following types has a 1-tolerant

implementation, for two processes, for NR-crash or for

unfairness to a known process: compare&swap, fetch&add,

move, queue, stack, sticky-bit, m-m swap, and test&set.

52

Consensus Revisited
continued

Corollary

If a type T implements consensus for two processes, then

T has no 1-tolerant implementation, for two processes, for

NR-crash or for unfairness to a known process.

Corollary — Common Types

None of the following types has a 1-tolerant

implementation, for two processes, for NR-crash or for

unfairness to a known process: compare&swap, fetch&add,

move, queue, stack, sticky-bit, m-m swap, and test&set.

52-a

Fault-Tolerant Register Revisited

Present a t-tolerant self-implementation of 1-reader

1-writer safe register

It uses 5t + 1 base registers. To apply an operation, it

applies the same operation on the base registers

asynchronously and waits for 4t + 1 responses.

The mode of the responses is returned as the response.

53

Fault-Tolerant Register Revisited

Present a t-tolerant self-implementation of 1-reader

1-writer safe register

It uses 5t + 1 base registers. To apply an operation, it

applies the same operation on the base registers

asynchronously and waits for 4t + 1 responses.

The mode of the responses is returned as the response.

53-a

Fault-Tolerant Register

NR-ArbitraryFailures

t-tolerant self-implementation of 1-reader 1-wrtier safe

register for NR-arbitraryfailures.

R1, R2, · · · , R5t+1: 1-reader 1-writer safe registers, initialized to

the initial value of the derived register

Pendingr: set, local to the reader process Pr, initialized to ∅

Pendingw: set, local to the writer process Pw, initialized to ∅

54

Apply(Pr, read,R) Apply(Pw,write v,R)

Invokedr: set, local to Pr Invokedw: set, local to Pw

Responsesr: multi-set, local to Pr Responsesw: multi-set, local to Pw

val, i : integers, local to Pr val, i : integers, local to Pw

begin begin
Invokedr := ∅ Invokedw := ∅
Responsesr := ∅ Responsesw := ∅
i := 0 i := 0
Loop Loop

i := (i mod 5t + 1) + 1 i := (i mod 5t + 1) + 1
if Ri ∈ Pendingr then if Ri ∈ Pendingw then

Check if Ri responded Check if Ri responded
if (yes) then if (yes) then

Pendingr := Pendingr − {Ri} Pendingw := Pendingw − {Ri}
Let val be the response Let val be the response
if Ri ∈ Invokedr then if Ri ∈ Invokedw then

Responsesr := Responsesr ∪ {val} Responsesw := Responsesw ∪ {val}
if (Ri 6∈ Pendingr) ∧ (Ri 6∈ Invokedr) then if (Ri 6∈ Pendingw) ∧ (Ri 6∈ Invokedw) then

Invoke read on Ri Invoke write v on Ri

Invokedr := Invokedr ∪ {Ri} Invokedw := Invokedw ∪ {Ri}
Pendingr := Pendingr ∪ {Ri} Pendingw := Pendingw ∪ {Ri}

Until |Responsesr| = 4t + 1 Until |Responsesw| = 4t + 1
return mode(Responsesr) return ack

end end

55

Fault-Tolerant Register

Theorem

register has a t-tolerant self-implementation for

NR-arbitrary failures.

56

Randomized Fault-Tolerant
Implementations of Generic Types

• Processes have access to fair coins

• Finite expected complexity

• Every type has a randomized implementation from

register! [Herlihy 1991]

57

Randomized Fault-Tolerant
Implementations of Generic Types

continuedTheorem

Every finite (infinite) type has a t-tolerant randomized

implementation from boolean (unbounded) register for

NR-arbitrary failures.

Corollary — Common Types

Each of test&set, compare&swap, move, m-m swap, fetch&add,

queue, and stack has a t-tolerant randomized

self-implementation even for NR-arbitrary failures.
58

Randomized Fault-Tolerant
Implementations of Generic Types

continuedTheorem

Every finite (infinite) type has a t-tolerant randomized

implementation from boolean (unbounded) register for

NR-arbitrary failures.

Corollary — Common Types

Each of test&set, compare&swap, move, m-m swap, fetch&add,

queue, and stack has a t-tolerant randomized

self-implementation even for NR-arbitrary failures.
58-a

Tired?

59

Graceful Degradation for Crash

Theorem

There is no 1-tolerant gracefully degrading

implementation of any order-sensitive type for

crash.

60

Graceful Degradation for Omission

Theorem

Every type has a t-tolerant gracefully degrading

implementation from every universal set of types

for omission.

61

Graceful Degradation for Omission

Proof

1. Every 0-tolerant implementation can be transformed

into a 0-tolerant implementation which is gracefully

degrading for omission.

2. register has a t-tolerant gracefully degrading

self-implementation for omission.

3. consensus with safe-reset has a t-tolerant gracefully

degrading implementation from {consensus with

safe-reset, register} for omission.

62

Graceful Degradation for Omission

Proof

1. Every 0-tolerant implementation can be transformed

into a 0-tolerant implementation which is gracefully

degrading for omission.

2. register has a t-tolerant gracefully degrading

self-implementation for omission.

3. consensus with safe-reset has a t-tolerant gracefully

degrading implementation from {consensus with

safe-reset, register} for omission.

62-a

Graceful Degradation for Omission

Proof

1. Every 0-tolerant implementation can be transformed

into a 0-tolerant implementation which is gracefully

degrading for omission.

2. register has a t-tolerant gracefully degrading

self-implementation for omission.

3. consensus with safe-reset has a t-tolerant gracefully

degrading implementation from {consensus with

safe-reset, register} for omission.

62-b

Graceful Degradation for Register

Again, we present a 1-tolerant gracefully

degrading self-implementation of 1-reader

1-writer safe register.

Combining this with other results like before, we

obtain a 1-tolerant gracefully degrading

self-implementation of register.

63

R1, R2, R3, R4: 1-reader 1-writer safe register, initialized to
the same value as the initial value of the derived register

FAILEDw: set, local to the writer process Pw, initialized to ∅
FAILEDr: set, local to the reader process Pr, initialized to ∅
ValuesRead: multi-set, local to Pr

Apply(Pr, read,R) Apply(Pw,write v,R)

ValuesRead := ∅ for i := 1 to 4
for i := 1 to 4 if Ri 6∈ FAILEDw then

if Ri 6∈ FAILEDr then resp := write(Pw, v, Ri)
resp := read(Pr, Ri) if resp = ⊥ then
if resp = ⊥ then FAILEDw := FAILEDw ∪ {Ri}

FAILEDr := FAILEDr ∪ {Ri} if |FAILEDw| ≥ 2 then
else ValuesRead := ValuesRead ∪ {resp} return ⊥

if |FAILEDr| ≥ 2 then else return ack
return ⊥

else return mode(ValuesRead)

1-tolerant gracefully degrading self-implementation of 1-reader 1-writer safe
register for omission

64

Graceful Degradation for Consensus

We present a t-tolerant gracefully degrading
implementation of consensus with safe reset from
{boolean register, 0-tolerant consensus with safe

reset}.

R1,R2, . . . ,R2t+1: t-tolerant gracefully degrading boolean registers,

initialized to 0

O1, O2, . . . , O2t+1: (0-tolerant) consensus-with-safe-reset objects

65

Procedure Propose(Pi, vi,O) Procedure Reset(Pi,O)
Vi[1 . . .2t + 1], estimatei, resp, k, set-of-failed, resp, k: local to Pi

set-of-failed: local to Pi begin
begin set-of-failed := ∅

estimatei := vi for k := 1 to 2t + 1
set-of-failed := ∅ resp := Read(Pi,Rk)
for k := 1 to 2t + 1 if resp = ⊥ then

resp := Read(Pi,Rk) return ⊥
if resp = ⊥ then else if resp = 1 then

return ⊥ set-of-failed := set-of-failed ∪ {Ok}
else if resp = 1 then for k := 1 to 2t + 1

set-of-failed := set-of-failed ∪ {Ok} if Ok 6∈ set-of-failed then
for k := 1 to 2t + 1 resp := reset(Pi, Ok)

if Ok ∈ set-of-failed then if resp = ⊥ then
Vi[k] := ⊥ resp := Write(Pi,1,Rk)

else if resp = ⊥ then
resp := propose(Pi, estimatei, Ok) return ⊥
if resp = ⊥ then return ack

resp := Write(Pi,1,Rk) end
if resp = ⊥ then

return ⊥
else if resp 6= estimatei then

estimatei := resp
Vi[1 . . . (k − 1)] := (⊥,⊥, . . . ,⊥)

if Vi has more than t ⊥’s then
return ⊥

else return estimatei

end

Q?

66

